374 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 2, FEBRUARY 2021 EMB
—o——

Deep Learning Regression for Prostate Cancer
Detection and Grading in Bi-Parametric MR

Coen de Vente @, Pieter Vos

Abstract—One of the most common types of cancer
in men is prostate cancer (PCa). Biopsies guided by bi-
parametric magnetic resonance imaging (MRI) can aid PCa
diagnosis. Previous works have mostly focused on either
detection or classification of PCa from MRI. In this work,
however, we present a neural network that simultaneously
detects and grades cancer tissue in an end-to-end fashion.
This is more clinically relevant than the classification goal
of the ProstateX-2 challenge. We used the dataset of this
challenge for training and testing. We use a 2D U-Net with
MRI slices as input and lesion segmentation maps that
encode the Gleason Grade Group (GGG), a measure for
cancer aggressiveness, as output. We propose a method
for encoding the GGG in the model target that takes advan-
tage of the fact that the classes are ordinal. Furthermore, we
evaluate methods for incorporating prostate zone segmen-
tations as prior information, and ensembling techniques.
The model scored a voxel-wise weighted kappa of 0.446 +
0.082 and a Dice similarity coefficient for segmenting clin-
ically significant cancer of 0.370 + 0.046, obtained using
5-fold cross-validation. The lesion-wise weighted kappa on
the ProstateX-2 challenge test set was 0.13 + 0.27. We
show that our proposed model target outperforms standard
multiclass classification and multi-label ordinal regression.
Additionally, we present a comparison of methods for fur-
ther improvement of the model performance.

Index Terms—Prostate cancer, bi-parametric MRI, Glea-
son Grade Group, U-Net, deep learning, ordinal regression.

[. INTRODUCTION

ROSTATE cancer (PCa) is the most frequently diagnosed
P type of cancer among men in most countries [ 1], accounting
for nearly 1 in 5 cancer diagnoses [2]. It was estimated that there
were 1.3 million new cases of PCa and 359,000 associated deaths
worldwide in 2018 [1]. Methods to detect PCa in an early stage
are Prostate Specific Antigen (PSA) measurement and Digital
Rectal Examination (DRE) [3]. When these tests indicate the
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possibility of PCa, a transrectal ultrasound (TRUS) sytematic
biopsy is recommended by the guidelines of the European
Association of Urology [4]. PSA and DRE, however, have a
relatively low sensitivity and specificity [5]. Furthermore, TRUS
is invasive, has a relatively low sensitivity and underestimates
aggressiveness [6], [7].

Multi-parametric magnetic resonance imaging (mp-MRI) has
shown to improve sensitivity, potentially reduce unnecessary
biopsies by a quarter, and lower over-diagnosis compared to
standard TRUS [8]. PCa analysis with mp-MRI is, nevertheless,
a labor intensive procedure and requires a high level of expe-
rience [9], [10]. This has inhibited the implementation of MRI
guided decision making in most clinics. Automated analyses of
these images can potentially overcome these problems, thereby
encouraging the use of mp-MRI in more screening environ-
ments. However, scanning time for mp-MRIis more than 30 min-
utes [11]. Bi-parametric magnetic resonance imaging (bp-MRI)
has been introduced as a faster alternative without compromising
the diagnostic accuracy for PCa [11], [12]. For bp-MRI, only the
T2-weighted scan and diffusion weighted imaging (DWI) scans
(to compute the apparent diffusion coefficient (ADC) map) are
needed. This reduces scanning time to about 17 minutes [11].
It has been shown that bp-MRI has a comparable diagnostic
accuracy to mp-MRI [11]-[14].

A system that not only detects PCa, but is also able to predict
aggressiveness, can potentially provide the radiologist with more
information than a system that only detects PCa. A measure for
PCa aggressiveness is the Gleason Grade Group (GGG). It is
a predictor of pathological stage and oncological outcome, and
can be assigned to potential lesions using the histopathological
analysis of biopsies [15]. GGG ranges from 1 to 5, where a GGG
of 1 generally requires no treatment, while a GGG of 5 is the
most severe type of PCa [15]. Table I provides a description of
all GGGs.

Previous works have explored different deep learning methods
for PCa detection. Tsehay er al. [16] used a convolutional
neural network (CNN) with five layers and outputs at every
layer to produce a probability map of PCa. Kohl ef al. [17]
used a U-Net [18] with an adversarial loss to segment clinically
significant prostate cancer (csPCa) with a Gleason score > 7,
which is equivalent to GGG > 2.

Other works have focused on the classification of lesions as
clinically significant or insignificant. Liu et al. [19] trained
a 6-layer CNN for classification. Others have used transfer
learning for this task [20], [21]. Mehrtash er al. [22] used a
3D CNN for distinguishing these two classes. They used the
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TABLE |
GLEASON GRADE GROUP DESCRIPTIONS

GGG 1 2 3

4 5

Tissue
description [29]

Only individual
discrete well-formed
glands.

Mainly well-formed
glands with lesser
component of
poorly-formed / fused /
cribriform glands.

Mainly poorly-formed
/ fused / cribriform
glands with lesser
component of
well-formed glands.

Only poorly-formed /
fused / cribriform
glands or mainly
well-formed glands
and lesser component
lacking glands or
mainly lacking glands
and lesser component
of well-formed glands.

Lacks gland formation
(or with necrosis) with
or without poorly
formed / fused /
cribriform glands.

dataset provided by the ProstateX challenge, which focused
on this binary classification task [23]. More classical machine
learning techniques than deep learning have also been used [24].

Multiple works have focused on grading lesions by classify-
ing their GGG from mp-MRI. Jensen et al. investigated GGG
grading from MRI using a k-nearest neighbor classifier, while
merging some GGGs to the same class [25]. Moreover, the goal
of the ProstateX-2 challenge was to grade lesions by predicting
their GGGs [23]. The winner of the ProstateX-2 challenge [26]
used handcrafted texture features as input of a stacked sparse
autoencoder, with the five GGG classes as output.

Recently, Cao ef al. [27] performed simultaneous grading
and detection by training an end-to-end network that predicted
Gleason score groups for each voxel in the image. They ordinally
encoded the Gleason score groups. One of the novelties of our
work is the proposed method for ordinally encoding this model
target, which we refer to as soft-label ordinal regression, as
an extension of [28]. In this work, we compare their proposed
method for encoding the classes, which we refer to as multi-label
ordinal regression, to our method for ordinally encoding classes.
Moreover, we present a detailed comparison of methods for ad-
ditional performance improvement. We also propose to include
zonal information into the network architecture, which could aid
the training process, as lesions have different characteristics in
different prostate zones.

The ProstateX-2 challenge was organized by the American
Association of Physicists in Medicine (AAPM), together with
the Society of Photo-Optical Instrumentation Engineers (SPIE)
and the National Cancer Institute (NCI). The goal of this chal-
lenge was to grade lesions from mp-MRI, given their coordinates
in a volume. Thus, the task was only GGG classification and
not detection. The goal of the current work is to simultaneously
detect and grade lesions from bp-MRI. In contrast to the methods
proposed by the ProstateX-2 contestants, there is no need to
manually indicate suspicious regions in the image, which is
closer to the potential clinical application.

We compare three different approaches of encoding the GGG
in the model target, of which two take into account that the
classes are ordinal, i.e., GGG 1 < 2 < - -+ < 5. Thisis unlike the
classes in most other classification problems, where the classes
are not ordinal. The manner in which the GGGs are encoded in
the model targets vary in these approaches. We use a U-Net [18]
with bp-MRI images as input, and segmentations of the lesions
that encode the corresponding GGG of each lesion as target.

Furthermore, we explore different methods for the incorporation
of zonal information in the network, and investigate the effect
of ensemble learning.

Il. METHODS
A. Dataset

The ProstateX-2 challenge train set contains 99 patients and
112 lesions. This dataset was used for training and validation.
The ProstateX-2 challenge test set contains 63 patients and 70
lesions. The ground truth associated with this test set is not
publicly available. All evaluation was done by the challenge
organizers.

All scans were acquired at the Radboud University Medical
Center. They were read by a radiologist with 20 years of expe-
rience. Findings to which the radiologist assigned a PI-RADS
score of at least 3 were referred to biopsy.

A pathologist with over 20 years of experience performed
analysis of the MRI targeted biopsies and defined the GGGs of
the lesions. The challenge dataset contains 36, 41, 20, 8 and 7
lesions of GGG 1,2, 3,4 and 5, respectively. The dataset provides
coordinates of the lesion centers. We delineated the lesions using
in-house software, which is based on a semi-automated region
growing technique. The centroid coordinates of the lesions that
were acquired from the MRI targeted biopsy were used to make
these delineations.

The images were acquired with a 3 T MAGNETOM Trio
and Skyra (Siemens Medical Systems) scanner, without an
endorectal coil. T2-weighted scans had an in-plane resolution
of around 0.5 mm and a slice thickness of 3.6 mm. They were
acquired with a turbo spin echo sequence. The ADC scans were
calculated using three DWI scans (b-values of 50, 400 and 800).
The DWI scans were acquired with a single-shot echo planar
imaging sequence with diffusion-encoding gradients in three
directions, and had an in-plane resolution of 2 mm and a slice
thickness of 3.6 mm.

B. Preprocessing

We used a fixed ROI size of 90 x 90 x 80 mm? to crop the
volumes around the image center. We visually verified that the
prostate gland was fully contained in the ROIs. The ROIs were
resized to 192 x 192 x 32. This size was chosen because this
height and width are divisible by two a sufficient number of

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on May 04,2023 at 11:38:23 UTC from IEEE Xplore. Restrictions apply.



376 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 2, FEBRUARY 2021

times to be able to perform max-pooling and up-sampling six
times (which is further discussed in Section II-C).

We registered the ADC scans to the corresponding T2-
weighted images, to correct for patient movement during scan-
ning. Most misalignments were expected to be caused by ro-
tation and translation of the patient, as the prostate generally
does not deform much. Hence, we performed rigid registration.
Since anatomical structures have different intensities in these
MRI types, we used mutual information as a metric. Also, we
used gradient descent with a learning rate of 1.0 as the optimizer.
SimpleITK [30] was used to perform registration.

The images were scaled between 0 and 1. The T2-weighted
scans are qualitative, so we normalized these images indepen-
dently per volume image. In contrast, ADC is quantitative, so
the ADC images were normalized over the entire dataset.

In our experiments, we compared 2D to 2.5D methods. In the
2D method, we trained the model on individual slices. The input
in the 2.5D approach also contained 2 slices above and 2 slices
below the middle slice. The target in the 2.5D method, however,
was only the output corresponding to the middle input slice.

C. Network Architecture

The network architectures that we used in this work were all
adaptations of U-Net [18]. Fig. 1(a) shows a schematic overview
of this architecture. Such a network is a type of encoder-decoder.
The final convolution of the network is followed by a 1 x 1
convolution with sigmoid or softmax activation. This activa-
tion function varied per model target, which is explained in
Section III-A.

D. Model Target

We compared three different ways to generate the model
targets. For all methods, the network assigns a label for each
voxel in the input. However, the way the class is represented is
different for each method. The multiclass classification target,
unlike the other two methods, is not an ordinal approach. One of
the ordinal approaches is acommon ordinal regression method in
literature [27], [31], [32], and the other is our proposed method.
Fig. 2 shows an example of a target slice with two lesions, for
each of the three model targets.

The ordinal approaches have two advantages. Firstly, these
methods penalize a prediction that is further from the target
more than a prediction that is closer. In contrast, the multiclass
classification method penalizes all incorrect predictions equally.
Moreover, when training with the multiclass classification target,
the network only learns for one class per sample. In constrast,
for the ordinal approaches, the GGGs share output classes, so
the model learns for multiple classes with one sample.

The target encodes five different classes. The first class is the
background class and consists of clinically insignificant lesions
(GGG = 1) and healthy tissue. The other classes correspond to
csPCa, where each class is a different GGG.

1) Multiclass Classification: The classes are one-hot en-
coded. Hence, the output target consists of five output chan-
nels, where each output channel corresponds to one class. If
a voxel, for example, corresponds to a GGG of 3, the target

is (0,0,1,0,0). Since each sample is assigned to exactly one
class, we use softmax activation after the final convolution. We
can express the softmax function S as:

e
S(z); = —, 1
(Z) cl. K Eji-(zlezj ( )

where z is the input of the activation function, and K is the
number of classes. The class with the maximum probability is
chosen during test-time.

2) Multi-Label Ordinal Regression: This method was pro-
posed by Cheng ef al. [32] and used by Cao et al. for GGG
prediction from mp-MRI [27]. Let K be the number of classes.
If the class for a sample is k£ (1 < k < K), the sample is also
assigned to all lower order classes (i.e., all classes 1, ...,k — 1).
Thus, the label for that sample is (¢1,¢2,...,tx_1), Where t;
(1<i<K-—1)is 1ifk>iand O otherwise. In this work,
K =5, so if, for example, a voxel corresponds to a GGG of 3,
the target is (1, 1,0, 0). Since all channels of one sample could
be 0 or multiple channels could be 1, the output classes of one
voxel should not always all sum to 1. Hence, sigmoid activation
is computed separately for each neuron. The sigmoid function
S is defined as:

e

—_— 2
T @)

S(z)ic1. k-1 =

where z is the input of the activation function. This activation
ensures that the output of each class is between 0 and 1.

During test-time, the class is determined by counting the
number of classes for which the probability is at least 0.5.

3) Soft-Label Ordinal Regression: The target consists of
only one output channel. It can be seen as a single soft label,
where a higher order class corresponds to a greater probability.
In fact, the lowest and highest order classes are assigned to a
probability of 0 and 1, respectively. The remaining classes are
linearly scaled between these scalar values. Essentially, normal-
ized values of the classes are directly used for the target. The
normalization function N (k) can be expressed as N (k) = ==
For example, if the label is 3, the target will become 0.5. As all
output values are between 0 and 1, and there is only one output
channel, the sigmoid activation is used in the final layer.

During test-time, the prediction probabilities are converted
back to classes. The class that is assigned to a probability is
the class for which that probability is closest to the normalized
value of that class. For example, if the prediction is 0.45, the
closest normalized class is 0.5 (as N(2) = 0.25, N(3) = 0.5,
and N (4) = 0.75), which corresponds to class 3.

E. Training

There are many more voxels that are not part of a lesion than
voxels that are part of a lesion. Because of this class imbalance,
weighted cross-entropy was used as a loss function. For the
different model targets, the implementations for weighting
the classes were slightly different. In multiclass classification,
the cross-entropy loss Lyscc(p, y) for prediction p and label y
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Fig. 1. Network architectures of different approaches to incorporate zonal information. Next to the feature maps, the dimensions of the feature
maps are given as width x height x channels. (a) Zonal input before first convolution. Note that this figure with only the first two input channels
is equivalent to the main processing pipeline. (b) Zonal input in decoder. (c) Zonal input before final convolution. (d) Zonal information as auxiliary
outputs.
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Multi-label
ordinal regression

Soft-label
ordinal regression

Multiclass
classification

Back- GGG GGG GGG GGG
ground 2 34 s >1

GGG GGG GGG GGG

>2 >3 >4

Fig. 2. Different model targets. The same slice with GGG 3 lesion (top
left) and GGG 5 lesion (bottom right) is shown.

could be expressed as:

K

= —yilog(p1) —a Y yrlog(p),  (3)
k=2

ﬁMCC(pa y)

where « is a weighting factor, pj € [0,1] is the prediction
of class k, and y;, € {0,1} is the label of class k. Since the
weighting factor is independent of the class, each foreground
class is weighted equally.

In multi-label ordinal regression, the loss Ly .or(p, y) was
weighted as follows:

K-1

Lyror(p,y) = —(1 = yx)log(1 — pr) — ayx log(pr)-
k=1

4

In soft-label ordinal regression, we write the loss

Lsror(p,y) as:
Lsror(p,y) = —(1 —y)log(l —p) — aylog(p). (5)

pr and yy, are absent in this formula, as there is only one output
channel in this model target.

We used o = 10, as we observed that this yielded the best
results.

The models were trained until convergence or overfitting
occurred by using early stopping with a patience of 15 epochs,
which was approximately equal to 10* iterations. The networks
were implemented in Python using Keras [33] and Tensor-
flow [34]. The models were trained with a batch size of 4,
Adam optimization [35] with a learning rate of 104, 3; = 0.9,
and o = 0.999. As a means of regularization, we augmented
the data on the fly using random elastic deformation, gamma
correction with v between 0.5 and 2.0, rotation between —20°
and +20°, shearing between —10% and +10%, and flipping
along the y-axis with a probability of 50%. To prevent the models
from classifying all voxels as background, the model was fed
slices with at least one lesion voxel half of the time, and slices
without any lesion voxels the other half of the time.

F. Incorporating Zonal Information

We explored four different approaches for incorporating
prostate zone information in the network. This information
consisted of probabilistic segmentation maps of the prostate
zones. One of the reasons for using zonal information is that
PCa lesions look differently in MRI images, depending on the
zone in which they are located. Secondly, information about

the zones is useful because PCa is more likely to occur in the
peripheral zone (PZ) than in the transition zones (TZ) [36], [37].
We did not mask the input with the prostate gland, as tumors can
outgrow the prostate, which would lead to the partial exclusion
of some lesions from the network input.

The two different prostate zones considered in this work were
the PZ and the TZ. We used the non-thresholded softmax output
of a zonal segmentation network, as previous work has shown
that this improves PCa detection, compared to when the thresh-
olded output is used [38]. The segmentation network was an
anisotropic 3D U-Net, trained on 53 T2-weighted MRI volumes,
as described by Mooij et al. [39]. Fig. 3 shows examples of the
segmentation network output.

1) Input Before First Convolution: The probability maps
were concatenated with the original input channels. The only
difference with the baseline method was that there were four
input channels instead of two. The architecture of this method
is displayed in Fig. 1(a). Hosseinzadeh et al. [38] explored this
method of incorporating zonal information in a U-Net for the
detection of csPCa.

2) Input in Decoder: We input the zonal probability maps in
all U-Net levels of the decoder. Before each layer where feature
maps from the encoder are concatenated, downsampled versions
of the zonal probability maps were concatenated. The maps were
downsampled using average pooling, such that the x- and y-
dimensions were equal to the dimensions of the concatenated
feature maps. Fig. 1(b) depicts this method.

3) Input Before Final Convolution: Instead of concatenat-
ing the zonal probability maps at the start or middle of the
network, they were inputted just before the final convolution.
This method was explored by Hosseinzadeh et al. [38] for csPCa
detection. This method is displayed in Fig. 1(c).

4) Auxiliary Loss: To aid the learning of relevant features in
the encoder, we used an auxiliary loss term, where the auxiliary
target was the two zonal maps. Similarly to the main decoder,
a second decoder was connected to the bottleneck with a de-
convolution, and skip connections were set from the encoder to
this auxiliary decoder (See Fig. 1(d)). The loss function for the
auxiliary target was the negative soft Dice score, as proposed by
Milletari et al. [40]. The weights of the main and auxiliary loss
to compute the total loss were 0.8 and 0.2, respectively.

G. Ensemble Learning

We investigated two ensemble techniques to reduce the effect
of overfitting on the training set. In Section III-E, different
combinations of these techniques are evaluated.

During training, we saved the 10 models with the lowest loss
value on the validation set. During test-time, we used these mod-
els to make a prediction on the input image. The final prediction
was then determined by averaging the output probability maps.

Furthermore, we used test-time augmentation. We augmented
the input images during inference by applying the same types of
transformations as for the training set, except for random elastic
deformations. The inverse of the transformations were then
applied to the predictions for each augmentation. The average
of the outputs were then used to make the final prediction.
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Fig. 3.

Examples of the zonal segmentation network output. Each 2 x 2 block shows the middle slice of the MRI images of one patient. In each

block, we show the T2-weighted image (top-left), ADC image (top-right), T2-weighted image overlaid with TZ prediction of the network (bottom-left),
T2-weighted image overlaid with PZ prediction of the network (bottom-right). The predictions are the probabilistic network outputs.

H. Evaluation

As there were only a small amount of lesions per GGG in
the dataset, simply using a portion of the images as validation
set would lead to an unrepresentative validation set. Hence, we
evaluated all models with 5-fold cross-validation.

1) Voxel-Wise Predictions: We used the quadratic-
weighted kappa score k,, as a metric for evaluation [41]. This
metric has several convenient properties. Firstly, it adjusts
for random agreement. This is especially useful in case of
class imbalance. Furthermore, this metric penalizes a wrong
prediction that is further off from the ground truth more than a
prediction that is less far off. Hence, it takes into account that
the classes are ordinal. If k,, is 0, the agreement between the
predictions and labels is equal to random chance agreement, r,,
is 1 if there is perfect agreement, and x,, is —1 if the agreement
is exactly opposite.

In this work, we evaluated using the voxel-wise quadratic-
weighted kappa score K., yozer and we always calculated this
metric over the entire dataset.

To compare with work that detects and segments clinically
significant lesions (GGG > 2), we also calculated the Dice sim-
ilarity coefficient (D.SC') by considering voxels with prediction
GGG > 2 as the foreground class and the other voxels as the
background class.

2) Lesion-Wise Predictions: The task of the ProstateX-2
challenge was to grade lesions, given the image coordinate of
that lesion. The described method, however, produces voxel-
wise predictions. Hence, to compare with the ProstateX-2 chal-
lenge, we converted the voxel-wise to lesion-wise predictions.
We computed a GGG prediction p for each lesion provided by
the challenge with coordinate ¢ from a prediction mask M with
a GGG for each voxel.

We thresholded M with GGG > 2, resulting in a binary mask
T'. We then considered the connected component in 7" at location
c. If there was no connected component in ¢, p was set to 1.
Otherwise, we computed the mean of all voxel-wise predictions
in M in the selected connected component. p was then set to
the rounded value of this statistical measure. We expected this
approach to be more robust to noisy predictions than simply
taking the voxel prediction at ¢in M.

Once a single GGG prediction was determined for each le-
sion that the ProstateX-2 challenge proposed, we calculated the
lesion-wise quadratic weighted kappa score Ky, jesion- This met-
ric was also used for ranking the participants in the ProstateX-2

challenge. The previously described K yoze; 1S both a metric
for grading and localization, while DSC' is only a metric for
the segmentation quality of csPCa voxels. Unlike Ky vomel
Ku,lesion Provides a measure for the grading performance on
a lesion level, instead of on a voxel level.

We based the model selection on Ky, yozer, as this metric
both incorporates localization and grading performance. Fur-
thermore, we observed much lower standard deviations for
K vowel than for K., jesion, Which reduces the probability that
performance differences are based on chance.

IIl. EXPERIMENTS AND RESULTS

In this section, we investigate the influence of hyperparame-
ters and model settings on the performance. We compare differ-
ent model targets, model sizes by varying the number of U-Net
layers, methods for incorporation of zonal information, numbers
of model checkpoints used for an ensemble, and amounts of
test-time augmentations. A chain of experiments is presented,
i.e., except in the first experiment, the chosen best perform-
ing hyperparameters of the pervious experiments were used.
Section III-A to III-E each describe a separate experiment.
Results of the experiments are plotted in Fig. 4.

A. Model Target

First, we trained a network for each model target. The per-
formance metrics for each model target are plotted in Fig. 4(a).
Soft-label ordinal regression received a higher x,, yoze; than the
other two model targets. Furthermore, the two ordinal regres-
sion approaches outperformed multiclass classification. Soft-
label ordinal regression outperformed multiclass classification
with statistical significance (p < 0.05) in terms of Ky, vozel-
The Ky vozer Of multiclass classification, multi-label, and soft-
label ordinal regression were 0.225 + 0.114,0.348 £ 0.050, and
0.391 + 0.062, respectively. The differences between multiclass
classification and multi-label ordinal regression were not statis-
tically significant. In the remainder of the experiments, soft-label
ordinal regression was used as model target.

B. U-Net Layers

We compared different model sizes by varying the number of
U-Net layers, which is defined as the unique number of feature
map x, y-sizes in the network. Fig. 4(b) shows the performance
of networks with 3, 4, 5, and 6 U-Net layers. The U-Net with
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Results of different experiments. We compare different model targets (a), model sizes by varying the number of U-Net layers (b), methods

for the incorporation of zonal information (c), number of model checkpoints used for an ensemble (d), and numbers of test-time augmentations (e).
In the zonal information experiment, all model were calculated using both 2D (bars without pattern) and 2.5D (bars with dotted pattern). The error
bars are the standard deviations that were calculated from the different cross-validation folds. We determined statistical significance between the
different models in each experiment. We calculated the p-values using a two-sided t-test. The p-values of the statistical tests are displayed above

the two models between which statistical significance was calculated.

5 layers scored higher in terms of all reported metrics, so
in the following experiments we used 5 U-Net layers. The 5
layer network scored a K, vozer Of 0.391 £ 0.062. None of the
differences in Ky yozer Were statistically significant. In terms
of DSC, however, the 5 layer network performed statistically
better than the models with 3 and 6 layers.

C. Zonal Information

Next, we show the results of adding zonal information in
Fig. 4(c). Since zonal segmentations could have been under-
segmented in the slice direction, we also trained each network
with a 2.5D variant. Ky oz increased from 0.391 4 0.062 to
0.400 £ 0.064 when merging the zonal feature maps before
the final convolution. Thus, this method for zonal information
incorporation was used for the remaining experiments. None
of the other methods of using zonal information improved the
baseline. Moreover, none of the zonal information incorporation
approaches underperformed or outperformed the baseline with
statistical significance. Ky, voxzer dropped in all cases when going
from 2D to 2.5D.

D. Model Checkpoint Ensemble

Fig. 4(d) shows the effect of using multiple model checkpoints
for making an ensemble. We evaluated 10 ensembles, where
the ¢-th ensemble included the i best performing models on
the validation set. Except for when going from 2 to 3 and
going from 9 to 10 checkpoints, Ky yoszer increased. Optimal
performance was reached when using 9 checkpoints for the
ensemble. However, this was not statistically significantly dif-
ferent from only using the best model. K yozer increased from
0.400 £ 0.064 to 0.431 £ 0.085. Hence, in the next experiment,
9 model checkpoints were used.

E. Test-Time Augmentations

In Fig. 4(e), the effect of test-time augmentation is shown. We
evaluated the performance for 0 to 50 augmentations, with a step
size of 5. Ky yower increased most with 25 augmentations (from
0.431 £ 0.085 without augmentations to 0.446 + 0.082). The
largest performance gain in one step occurred when adding the
first few augmentations, as the performance curves in Fig. 4(e)
are steepest when going from 0O to 5 augmentations.

F. Results

The score for lesion-wise prediction of the best perform-
ing model in the previously described chain of experiments
Was Ky lesion = 0.172 2 0.169. The model from the cross-
validation iteration with the highest validation performance was
used for making predictions on the challenge test set, on which
this method achieved a Ky esion Of 0.13 &= 0.27. This mean and
standard deviation were calculated using bootstrapping with 1 k
iterations.

Qualitative results of the model are shown in Fig. 5. The
top row shows examples for which the model performed well,
while the bottom row shows examples where the model predic-
tions were not close to the manual delineations. Common false
positives include hypo-intense tissues that do not correspond
to clinically significant tissue according to the ground truth.
Furthermore, the effect of image registration is demonstrated
with several examples in Fig. 6.

IV. DISCUSSION

Soft-label ordinal regression performed statistically signifi-
cantly better than multiclass classification. This could be ex-
plained by the fact that the former method uses the information
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GGG 5

- GGG 4

- GGG 3

GGG 2

GGG 1

Fig. 5. Qualitative validation results of our approach. Each 2 x 2 shows an example of the same slice, where the top-right image is the ADC
map and the other three are T2-weighted images. The bottom-left is overlaid with the ground truth and the bottom-right is overlaid with the model
prediction. This model prediction is the output of the soft-label ordinal regression, which is between 0 (GGG 1) and 1 (GGG 5). The heatmap is
transparent for voxels where the assigned class was the first class (healthy tissue or GGG 1). The top row shows five lesions with correct localization
and grading. The bottom row shows examples where our method failed.

[ lesion prostate gland ]

Fig. 6. Examples of registrations. Each 2 x 2 block shows a slice of one patient. The blocks show the T2-weighted image in the top-left,
unregistered ADC in the top-right and bottom-left, and registered ADC in the bottom-right. To make it easier to observe the effect of the registration,

three images are overlaid with prostate gland and lesion segmentations that are based on the T2-weighted image.

that the classes can be ordered and that not all incorrect pre-
dictions are equally wrong. No statistical difference was found
between multi-label ordinal regression and soft-label ordinal
regression. However, the latter did score a higher performance
on average.

Furthermore, adding zonal information to the network at a
late stage in the network slightly increased the performance,
compared to omitting zonal information. During the same ex-
periment, we observed that when using 2.5D instead of 2D
input, performance consistently dropped. Apparently, there was
no useful information for the network in adjacent slices. These
slices likely only confused the network during training.

We also used an ensemble of 9 model checkpoints and
test-time augmentation, which increased the performance. By
evaluating the amount of augmentations during test-time, we
observed that at a certain point adding more augmentations had
no positive effect on the performance.

Performance scores of the approaches proposed by us and
other challenge participants were relatively low in general,
which illustrates that the task of grading cancer from MRI
data is difficult. A reason for this could be the definition of
GGG. This grading system is based on the most common and
second-most common type of cancer tissue in the lesion. Hence,
if the most common type of cancer has a low grade (e.g., 3), but
the second-most common type has a much higher grade (e.g.,
5), the Gleason score will be 3 + 5 = 8, thus this lesion will be
assigned to GGG 4. However, since most of the cancer tissue
is low grade, the lesion will probably appear as unaggressive
in an MRI scan. Other studies have shown that PCa grading
can lead to large disagreement between raters. For example,
a study of Ruprecht er al. [10] showed that the inter-rater
agreement between radiologists was x = 0.0129 (unweighted)
for distinguishing two stages of PCa from MRI. Moreover,
even when grading from tissue biopsies, pathologists scored an
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unweighted ~ for inter- and intra-agreement of 0.54 and 0.66,
respectively [42]. These agreement scores form a target for a
clinically desirable performance.

Other works that segmented csPCa from MRI are Kohl
et al. [17], Artan et al. [43] and Chung et al. [44], who report
a DSC of 0.41, 0.46, and 0.39, respectively. This is compara-
ble to our approach that scored a DSC of 0.37 for this task.
Our grading method with K, esion = 0.13 did not outperform
the best scoring submission to the ProstateX-2 challenge with
K, lesion = 0.27 [23]. However, we did perform a more difficult
and more clinically relevant task. After all, the goal of the
ProstateX-2 was GGG classification, while our proposed method
includes grading as well the detection of prostate lesions in
bp-MRI.

In future work, ROI selection could be based on a prostate
gland segmentation, instead of taking a fixed sized box in the
middle of the image. This would lead to the prostate always
being in the middle of ROI, which could aid the training pro-
cess. Furthermore, a larger dataset is likely to improve the
performance. Especially for high grade cancer, there is only
a small amount of lesions in the training dataset. Moreover,
in the current work, lesion segmentations are based on MRI.
Thus, improvements could also be achieved with the usage of
histopathology based delineations. Cao et al. [27] uses both a
larger dataset and reference segmentations that are based on
histopathology. However, that dataset is not publicly available,
so we cannot directly evaluate our proposed method on their
dataset.

Another way this approach could be improved is by split-
ting the task up into multiple networks. For example, a csPCa
segmentation network could be developed, followed by a clas-
sification network that grades the segmented regions. We per-
formed initial experiments using Mask R-CNN [45], which is
an example of such a workflow. However, we have not achieved
promising results using this architecture. This was most likely
caused by the small amount of lesions in the training population,
resulting in overfitting. Approaches such as those proposed by
Abraham er al. [26], where not the image, but image features
are used as input, are potentially less prone to overfitting on such
a small amount of training samples.

V. CONCLUSION

In conclusion, we have shown that soft-label ordinal regres-
sion improves the performance of PCa grading and detection
from bp-MRI over other methods. We have presented a compar-
ison of methods for improving the model performance, including
ensembling techniques and the use of zonal information. How-
ever, it remains an open question whether it is feasible to predict
GGGs from MRI with the expert performance that is reached by
pathologists when grading from histopathology images.
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